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A NONLINEAR STRESS-STRAIN RELATION

WILLIAM C. ORTHWEIN

School of Technology, Southern Illinois University,
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Abstract—A new nonlinear stress—strain relation for an isotropic, homogeneous material is presented. It provides
a realistic nonlinear uniaxial stress—strain curve and accounts for the apparent variation of Poisson’s ratio found
experimentally when classical linear theory is assumed. It also accounts for the Poynting effect, for the nonlinear
effect of hydrostatic stress superimposed upon simple tension and upon simple shear. The conditions set forth
by Truesdell for the acceptability of a constitutive equation are met, and the nonlinear stress—strain relation
reduces to the classical linear stress—strain relation for sufficiently small stresses.

1. INTRODUCTION

APPLIED loads and their consequent displacements are the fundamental laboratory
quantities which characterize the elastic or the anelastic behavior of a material. However,
these properties are conventionally described by relations between the derived quantities of
stress and strain in order to state the constitutive properties of a material in a manner which
is independent of any particular configuration and any particular loading.

In most theoretical analyses the stress is taken to be the actual force per unit of actual
area which acts across a surface, while in many experimental works it is approximated by
the force per unit of undeformed area across a reference surface in the initial configuration
of the body. Experimentalists often refer to this approximate stress simply as stress, and
refer to the theoretical stress as the true, or actual, stress. In what follows the term stress is
to denote the true stress.

Although strain has been defined in a number of ways, we shall be concerned with only
the more widely accepted definitions, referred to as classical strain, logarithmic (or *‘true”)
strain, Green-St. Venant, and Alamansi—-Hamel strain.

Suitable nonlinear strain—displacement equations for the solution of the problem of
large displacements of an elastic body have been formulated in Cartesian coordinates by
Love [1] and by Novozhilov [2] in terms of the Green—St. Venant strain measure. These
equations have been used by Green and Adkins [3] to determine the stresses which result
from certain prescribed deformations of an elastic body. Corresponding equations in
curvilinear coordinates appropriate to the Alamansi-Hamel strain measure have been
given by Truesdell [4], but no explicit solutions involving these equations for an elastic
material have been found in the literature.

Even though our main purpose is to present a nonlinear stress-strain relation which
appears to be in good qualitative agreement with experimental observations, we shall
digress in Sections 2 and 3 to demonstrate that the classical linear theory may not be
extended to the case of finite deformation due to large stresses by retaining the linear stress—
strain relations and simply replacing the classical linear strain—displacement relations with
nonlinear strain—-displacement relations. A brief discussion of logarithmic strain is presented
in Section 4.
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Motivated by the different deficiencies found in the linear theories when compared with
actual observation, regardless of which of these four strain measures is used, we propose
a nonlinear stress—strain relation in terms of general curvilinear tensors in Section 5. Not
only may this three dimensional stress-strain relation include the uniaxial predictions of
the logarithmic strain, but it is shown in Sections 6 through 10 that it also accounts for the
apparent variation of Poisson’s ratio in terms of the linear theory, for the Poynting effect,
and for the increased shear strain due to a given shear stress in the presence of a super-
imposed hydrostatic stress. It also accounts for the recent results reported by Chalupnik
and Ripperger [5]. In these sections it is to be understood that the strain measures are to
be either the Green-St. Venant or the Alamansi-Hamel strain measures, depending upon
the coordinate system chosen.

The initial assumptions herein differ from those given earlier by Truesdell [4], and by
Huston [6] in that the form of the stress—strain relations is not based upon the assumption
that the stress tensor is a function of the strain tensor, the strain tensor inner product, and
the principle strain invariants, as given by Reiner [7] and others. Instead, it is based upon
the assumption, also given by Reiner [7], that the strain tensor is a function of the stress
tensor, its inner products, and its principle invariants, which seems to correspond more
closely to the empirical relations proposed by Ludwik [8], by MacGregor [9], and by
Timoshenko [10]. The method also differs from a number of recent investigations in that
the existence of a strain—energy function is not assumed, in that arbitrarily large displace-
ments are permissible, and in that explicit results are given in terms of specific constants.
However, the significance of the results lies not in these differences, but rather in the display
of stress-strain relations which do agree with experimental data and which also conform
to the mathematical requirements set forth by Truesdell [4]. Consequently, the empirical,
uniaxial relations advocated by Ludwik [8], MacGregor [9], and others, need no longer be
considered isolated from the theory expressed by Truesdell [4, 11].

2. CLASSICAL LINEAR THEORY

In rectangular Cartesian coordinates the classical statement of the problem of the
extension of a rod due to axial tension is that

26‘“ == u,-’j-%—uj,,- (I)

&; = [(1+Vv)/Elo';— (v/EW 1] @
Jy=d 3)

' 6;;+F; =0 within the solid @)
o; = o;n; on the bounding surface (5)

where o;; and ¢,; are the stress and strain tensors respectively, n; is the outward normal to
the bounding surface, E is Young’s modulus, and v is Poisson’s ratio. The summation
convention is assumed for repeated indices, and a comma implies partial differentiation
with respect to the coordinate whose index follows. The x? axis is taken to lie along the axis
of the rod, so that u,(x?) is the displacement of the rod in the positive x* direction. Likewise,
u,(x!) and u,(x?) are the displacements in the positive x' and x> directions respectively.



A nonlinear stress-strain relation 373

Body forces F; will be assumed to vanish. Surface tractions are to act only over the ends
of the rod, so that ¢; = 633 = ¢ and g, = ¢, = 0 over the ends. Hence the only non-
vanishing components of the strain are

£11 = &2 = —(v/E)o (6)
£33 = o/E (M
which yield the well-known results that
u3 = (6/E)x’ @®)
u, xt
}= —(v/E)a{ , ©
U, X

where u,(0) = u,(0) = 0. It is of interest to note that if we consider a circular cylindrical
rod whose unstressed area is 4, that its stressed area now is given by

A = A1-(v/E)sT?, (10)

from which the volume of the deformed rod may be computed. Thus, when ¢ = E/v the
area of the rod goes to zero, even though the length of the rod becomes L = Ly(1+1/v),
where L is the length of the unstrained rod. These equations imply that a rod of incompres-
sible material, p = pg and v = 0-50, will vanish when stretched to three times its original
length. Thus it is clear that in this case the classical linear theory of elasticity violates the
macroscopic laws of conservation of matter, which is that p, ¥, = p,V,, where p,, p,, V},
and V, are the mass density and volume configurations 1 and 2 of a reference mass, or body.

In infinitesimal elasticity (6/E)x® = u; is taken to be so small that the second and higher
order terms may be neglected, so that

AL = [1—=(v/E)a]* {1+ 6/E)A,L¢ ~ [1+(1 —2v)6/E]AoL,,

which yields AL = AyL, when v = 1/2. Second order violation of the conservation of
matter is usually ignored in classical linear elasticity because the theory is valid only for
vanishingly small displacements. Nevertheless, the violation does exist, and becomes
important if we wish to examine non-infinitesimal displacements.

3. NONLINEAR STRAIN MEASURES

In this section we shall attempt to resolve the unrealistic results of the classical theory
by retaining the classical linear stress—strain relations and introducing nonlinear strain-
displacement relations. We shall begin with the Green—St. Venant strain—displacement
relations [4] in rectangular Cartesian coordinates; namely,

28,']' = ui,j+uj,i+uky,~uk‘j. (11)

Large deformations of a linearly elastic rod may then be described by equations (11) and
equations (2) through (5). It is easy to show that these equations are satisfied by

xl

} = (J[1 —Z(V/E)a]—l){ (12)

x2

Uy
Us

us = (J[1+2(0/E)]— x> (13)
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Strained and unstrained areas are now related according to
A = Ag[1—2(v/E)s), (14)

so that the area goes to zero as the length goes to LO\/ (14 1/v). Hence for materials with
v = 0-50 the specimen must vanish when it is stretched to /3 times its original length.
Incompressible matter is, therefore, either destroyed or compressed to infinite density under
the action of axial tension.

In the previous strain measure the strains and displacements were expressed in terms
of a coordinate system which was fixed relative to the initial, or unstrained, configuration.
The Alamansi-Hamel strain measure [4] differs from the previous strain measure in that
it is defined in terms of a coordinate system which usually is associated with the final,
or strained, configuration. Consequently, the strain—displacement relations in Cartesian
coordinates are now given by

26y = wy o uj— W i (15)

and the displacements are given by

“‘} = {1 —J[1+2<v/E>aJ}{x‘ (16)
U, X
uy = {1—/[1—2a/E)]}x> (17)

which satisfy equations (15), (2) through (5), and the boundary conditions. Since the x*
coordinate system has been selected to describe the strained configuration, the original,
or unstrained length of the rod in question may be found in terms of the strained length
from

Lo = L—u*(L) = \/[1-2(¢/E)] (18)

so that
L = Lo/y/[1—2(0/E)] (19)
A = Ao/[1+2(v/E)a]. (20)

Together equations (19) and (20) imply that the volume of an incompressible rod must
increase when the bar is placed in tension. That is, equation (19) requires the rod to become
infinitely long as the tensile stress approaches E/2, while equation (20) demands that the
cross-sectional area of an incompressible rod approach 24,/3.

4. LOGARITHMIC STRAIN

Logarithmic strain appears to have been suggested for one dimensional problems as the
result of a feeling that the classical strain measures over-emphasized the role of the initial
length in the case of non-infinitesimal deformation [8-10]. In this empirical modification
of the theory the strain-displacement relations (1) are replaced by

¢ = log(l+¢) (21)
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where ¢ = (L — Lg)/L,. By turning to the stress—strain relation
£ =gd/E (22)

usually associated with the logarithmic strain [8-10], and then substituting for ¢’ according
to equation (21), it is easy to see that equation (22) is equivalent to

¢=eE—1. (23)

Introduction of the logarithmic strain measure thus means that we have actually replaced
the algebraically linear stress—strain relation (2) by the nonlinear stress—strain relation (23),
in terms of the classical measure of strain which appears in equation (2).

Replacement of equation (2) by the single equation (23) demands that lateral distortion
be neglected. Advocates of equation (22}, or equation (23), have, therefore, adjoined the
condition that

g = —log(l—q) (24)

where g = (4y— A)/A,- Since equation (23) and (24) are equivalent to
L=1Lye"* (25)
A= Age "k (26)

it is obvious that incompressible matter is conserved in this theory.

Objections to the use of logarithmic strain are that (i) the constant volume relationship
implied by equations (25) and (26) may not be realistic for large strains, and that (ii) it has
been achieved by neglecting Poisson’s ratio. Moreover, it has been held that (iii) no satisfac-
tory extension of the logarithmic strain measure to three-dimensional deformation has been
found [4].

Nevertheless, numerous arguments in favor of logarithmic strain, as opposed to classical
strain, have appeared in the literature, all with the central theme that better agreement is
achieved between theory and experiment when logarithmic strain is used. This may be
expected because of the similar nonlinearity of equation (23) to that of the usual uniaxial
stfess—strain curve.

5. AN IMPROVED NONLINEAR STRESS-STRAIN RELATION

Inasmuch as neither the Green-St. Venant nor the Alamansi-Hamel strain measures
improved the agreement between theoretical and experimental results when linear stress—
strain relations were employed, it seems reasonable to replace the linear relations (2) with
some nonlinear form. Huston [6] has shown that if terms of the third order and higher are
dropped, then the stress tensor in an isotropic, homogeneous, elastic continuum may be
given in terms of the strain tensor as

ol = G?T)I(ETE\T)W‘ —2I,vé;+ (1 = 2v)el ;4 (Sv— )e' b ], (27
where I, = ¢; and I, = &£%. According to these equations, however, a circular cylinder
of incompressible material cannot deform such that ¢! # 0 and &% = ¢3% # 0 when
subjected to a uniaxial tension or compression in which the only nonvanishing stress
component is finite. That is, a material which obeys equation (27) is perfectly rigid under
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axial loading when v = 0-50. This conflicts with experimental data when the reduction of
cross-sectional area is taken into account [12].

Based upon the generality of Huston’s interesting result we conclude that stress—strain
relations which display a more realistic behavior may be obtained if we assume from the
outset that the strain may be expressed as a function of the stress tensor and its inner
products, as

g = A8+ Ay6'j+ Ayo' oY, (28)

inwhich A, = AJ,,J,, J3,J,,T3) for k = 1,2, 3 where the stress invariants are defined by

Jy =0} Jy=d;

1 ... - .
gy = ‘éjégnﬂ'f?fj J; = Gfk"i‘

1. - .

Jy= yégﬁpo’f’x!aftjaf’k J3 = ijo-{kgf‘i
These two sets of stress invariants are not independent, but are related according to
Jy = J(Jy—J,)+3J;. This representation is distinctly different from the representation
assumed in the derivation of equation (27) ; namely, that

o', = By0i+ Bye'j+ BaghieY; (29)

because equation (29) cannot generally be solved explicitly for &;. This difference is of
engineering importance because equation {28) can provide good agreement between theory
and experiment, as will be shown.

In the case of uniaxial tension it is evident from the Hamilton-Cayley theorem that the
coefficients 4,, 4,, and 4, may be chosen such that equations (28) agree with the stress—
strain curve obtained from the logarithmic strain relations {23) to whatever order is
desired [13]. Relations (28), therefore, serve to bridge the gap which has existed between the
logarithmic strain relations and the mathematical requirements given by Truesdell [11].
Because of the wide variety of choices that are possible for coefficients A4, equations (28)
may, in fact, provide a more realistic description of actual materials than may be obtained
from previously suggested relations.

The remaining sections will be devoted to the nonlinear stress—strain relation

Ef; = [a3+7], ’(V/E)11]5§'+ [+ “')/E]Ufj_ ??O'fko'fj (30)

which is obtained from equation (28) when the A4, are chosen to agree with the first three
terms of equation {23). It will be shown that this equation, which holds for isotropic,
homogeneous, elastic materials is sufficient to account for a number of actual phenomena
not included in those theories based upon equations of the form of equation (29).

Evans and Pister [14] have obtained a stress—strain relation similar to equation (30)
from the complementary energy density function, but subject to the condition of classical
infinitesimal strain. Since stress-strain relation (30) is a special case of relation (28), valid
for large strains [4, 7, 11], it may be viewed as an extension of the work of Evans and Pister
to include large strains. The coefficients in equation (30) have been selected such that the
isotropy group is the full orthogonal group [10, 15]. These constants have the dimensions
a ~ (LT*MPP v, 1 ~ (LT?*/M)?; E ~ M/LT?); and v ~ 1. Representative values of these
coefficients will be determined in the next section.
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6. UNIAXIAL TENSION AND POISSON'S RATIO

Let ¢, = ¢ be the only nonvanishing stress component. Then the nonzero stress
invariants are J, = 0,J, = 6%, and J; = ¢?, so that

é = [00°+70% — (v/E)o1d;+ [(1+v)/Elo’;—no'yo’;. (31)

Consequently
ey = a/E+(y—~n)o?+oc> (32)
¢% = ¢ = (a0’ +y0* —(v/E)o] (33)

It is at this point that the coefficients (y —#) and « may be specified such that equation (32)
will agree with the first three terms of the series expansion of the stress—logarithmic strain
relation {23). In the remainder of the discussion we shall assume the values v = 0-25,
E=30x10"psi, o= 6173x1072*in%1b? (y—n) = 5556 x 10 '®in*/Ib%. Particular
values of y and n may be chosen from a shear test or from combined shear and hydrostatic
loading.

From equation (32) and (33) we find that the ratio of the lateral contraction to the
negative of the longitudinal extension becomes

a0 +y0? —(v/E)o

’ i —_ 4
Y 6/E+(y—n)o? +ac’ 34

which reduces to the classical value of Poisson’s ratio v when the longitudinal stress is
sufficiently small. This ratio v' is in good agreement with the experimentally determined
ratio reported by Goodman [16] for aluminum and titanium alloys.

7. HYDROSTATIC LOADING

A hydrostatic load corresponds to the stress field ¢!, = 6% = 0% = — ¢ where all other
stress components vanish. In this event J, = — 30, J, = 36%,and J; = — 3063, so that
eh = &4 = e3 = — 300> +(3y—no’—[(1~2v)/Elo. (35)

A material which obeys equation (30) is, as a result of equation (35), incompressible if
o = 0,3y = n,and v = 0-50. In contrast to the classical linear theory, we find that nonlinear
materials represented by equation (30) cannot be characterized as incompressible solely on
the value of Poisson’s ratio. Furthermore, according to the proposed theory incompressible
behavior under hydrostatic loading does not imply incompressible behavior under other
loading conditions.

8. COMBINED SHEAR AND HYDROSTATIC STRESS

To examine the effect of hydrostatic loading upon the strain response of a material

described by equation (30) we assume that ¢'; = 62 = ¢% = ~¢ and that 6}, = 0% = 1
with stresses 6 = ¢°, = 6% = ¢% = 0 in terms of a rectangular Cartesian frame. Then
Ji=Ji= =30, J,=3¢>+273, J;= —30*—601’ (36)

&/ = [Boo® — 6aot® + 3ye? + 2yt2 + 3(v/E)o 18+ [(1 + v)/Elo’;— no'i0%;. (37
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Upon setting { = 1, and j = 2, we find that
eh = [(1+v)/E+2nolt (38)

in which the strain due to a given value of the shear stress 1 increases with increasing
hydrostatic stress because of the second term within square brackets in equation (38).
Because 7 is of the order of 107 !¢ in%/Ib? while (1 +v)/E is of the order of 10~ in?/lb, the
second term will become important only in the presence of large hydrostatic forces. An
effect of this nature has been reported by Bridgman [17].

9. COMBINED TENSION AND HYDROSTATIC STRESS

The effect of a hydrostatic pressure —p superimposed upon simple tension may be
realized with the aid of relations (30) and

Ji= =3p+o, J,=3p*-2po+e* Jy=3p*+3p’c—3pa+d?

where o, = ~p+0,6% = ¢ = —p. The resulting expression for the longitudinal strain is

ely = —{3ap® —By—n)p* + (1 - 2v)/Elp + 3ulo — p)op + 2(y —n)pa}

(39)
+ac3+(y—n)e*+o/E.
Since the square bracket is positive for the values of «, y, and » previously chosen from the
uniaxial test, it follows that the longitudinal strain decreases as the hydrostatic pressure
increases. This result agrees well with the static test results published recently by Chalupnik
and Ripperger [5].

10. TORSION

In this section we shall first demonstrate that the conventionally assumed stress field
64, = 11, with all other stresses equal to zero, which is satisfactory in the linear theory, fails
to produce physically plausible results when the higher order terms which appear in
equation (30) are retained. We then show that no such difficulties arise if the stresses
O, Ogg, G,g» G, in terms of a circular cylindrical coordinate system, are assumed {o be
nonzero. It follows from equation (30) that these stresses give rise to the Poynting effect
and to the interior stress field reported by Nadai [18].

We begin by assuming that the only nonvanishing tensor components of the stress field
are 6% = 1 = const., and ¢ = (x')*t when expressed in circular cylindrical coordinates
where x! = r, x> = 0, and x* = z. The physical components of tensors ¢% and o>, are
identical to one another; namely, ,, = r1. Then J, =0, J, = 2(x't)?, and J; = 0.
Substitution into equation (30) gives

£y = 2p(xle)?
eh = 8%3 = (ZY"?)(XIT)Z

eh = [(1+v)/E]
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and
¢y = dy(x') +1 ¢33 = 22y—m(x't)’+1
22 = (X)2Qy—n)(x'’+1]  cp3 = 2A(1+V)/E](x))*r
where ¢;; = 2¢;+g;; in which g;; is the metric tensor. The radius of the twisted rod then
becomes
a 1
a= J- (1)t dr = 2(4pa*t® + ¥+ log[2y*ta+ (4ya’t® + 1)*]
0 2 4ty
and the circumference becomes

2n
a= f [e2(@)] d6 = 2ma[2ary’Qy—n)+ 1]}
0

where a is the radius of the unstrained rod. Since it must still be true that d = 2za, this
relation can hold only for a particular value of y/#. Since these results are to be independent
of particular values of the parameters, we conclude that the classical fields cannot be
generally realized.

On the other hand, the stress field

o =s(x)) oL =o0(x) o} =plx"

whose physical components are
Opp = S(r)s Ggg = O'(V), G, = p(r)
Gy, = Oz = rT(r)

may be realized. These stresses satisfy the boundary conditions that ¢,(a) = 0, and that
the relations

T= ZnJ 04,12 dr, f o,,rdr=0

0 0

hold over the ends of the bar, where T is the applied torque.
Evaluation of the pertinent stress invariants from display (40) yields

Ji=s+o+p, J, =5+ +p +20x"1)?% Ty =5 +03+p3+3(x'1) (o +p)

Substitution of these expressions into equations (30) in turn yields

b= =ey=¢4=0

e}y = oJ3+7yJ,+(1/E)[s—v(o + p)] —ns?

&% = aJ 3+ 9], +(1/E)[o —v(s+ p)) —nlo> +(x'1)?] (41)
% = [(1+V)/Elt—n(o+p)t

e = aly+77;+ (/E)p—vis+0)] —nlp*+ (x'1)%]

™
w
i

which are the stress—strain relations which govern the finite twisting of a rod.
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The field equations governing s, p, ¢, and T may be formed from equations (41) and the
equations of equilibrium, which reduce to
s,+58/r =o/r (42}

and the finite compatibility relations [12, 17]

-1
Rijmn -2 (Cin,jm + Cim,in— Cim, in—Cin, im)

. . I (43)
+ Ckp([.]ms k] [ln’ P] - [.]n’ k] [lma p]) =0
where ¢/ = CY/c in which C¥ is the cofactor of the matrix element c;;, ¢ = det(c;;), and
where [ij, k] is the Christoffel symbol of the first kind.
For simplicity let ¢;; = {, ¢35 = 8, ¢33 = ¥, and ¢, = @, then the only nonvanishing
components of the Riemann-Christoffel tensor R;j,, may be written as

a‘—i;{log[@}—d—r)(lso*]} 0 (44)
2]

B (dz,lll/dr) %;lg”* %%%[%?”“"”gg] =0 (46)
-4

where B = 0 — 2. Equations (44) through (47) may be satisfied by
@ = Cy, 6 = cy, Y =c3 (48)

where ¢? = ¢,c;. As a consequence, the first equation of set (48) may be written as

.= ¢, E 1
2(1+v)—nE(g+p) r?

(49)

Thus t and 6§ in the second and third equations of (48) may be expressed in terms of
s and p and their derivatives by means of equations (43) and (49). Numerical methods may
be used to solve the resulting system of two simultaneous ordinary nonlinear differential
equations. Rather than becoming engrossed in the numerical solution of these equations,
however, we shall instead linearize equations (48) by neglecting terms having coefficients
o, ¥, or # in expressions (41) and (49). Although the neglect of these terms may not be entirely
justified near the axis of the rod, the resulting expressions qualitatively verify that the
Poynting effect is accounted for by stress—strain relations (41), and hence by equations (30),
and that these equations also account for the large compressive stresses found by E. A.
Davis along the axis of a twisted rod [18].

The linearized second equation of (48)

0 = 2r(1/E)[o—v(s+p)]+7° = c,
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may be satisfied by

y dr a“"J‘“ dr

W=T= e | Py

E al? Ca, 14y 14w
+m[(;) —1}—!—;3((11 —rt }

where s(a) = 0. Substitution from equation (50) into the third linearized equation of (48)

(50)

%[p—vrs,,——sz]-?-l = (4

leads to

E [- 1 —C 3
= 1 =0 51
P=ya T ] G
due to the boundary conditions over the ends of the rod. Condition (51) can be satisfied
only if
c;=1+2v>0. (52)
Thus the length of the rod must increase. Consequently, the Poynting effect is included in
equations (41} and hence in tensor equation (30). Dependence of the increase in length upon
the applied torque has been suppressed by the neglect of o, v, and # terms in equation (41).
Substitution for s from equation (50) into equation (43) and use of the boundary condi-
tion that 645 = const. on the lateral surface permits the evaluation of a constant which also
appears in the expression for o,,. The radial stress may then be written as

o) = E r(g)z 2 /a)’"“+l+v] 53)

T2t ] 1r 1—v

where the singularity at the axis implies a large compressive stress along the center line of a
twisted rod. Replacement of a large value by a singularity and the independence of the
compressive stress of the applied torque are again due to the linearization of equations (48).
Nevertheless, these results are sufficient to show qualitative agreement between theory and
experiment.

11. CONCLUSIONS

We have shown that tensor equation (30), which satisfies the seven conditions enunciated
by Truesdell [12] for admissible constitutive equations, is adequate to realistically account
for a number of phenomena which have not been explained by previous nonlinear stress—
strain relations. Moreover, the agreement between theory and experiment for a number of
loading conditions is achieved using three additional constants «, y, and x, which may be
determined from tension and shear tests only. With just these three additional constants
determined from two tests we have accounted for five phenomena, so that it is reasonable
to believe that the good agreement is not due to curve fitting, but rather due to the physical
significance of the terms in equation (30). Because this agreement between theory and
experiment rests upon the structure of relations (30), we have a nonlinear stress-strain
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relation that is simple enough to be of value in the engineering analysis of heavily loaded
members.
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AbcrpakT—ITpuBoauTcs HOBas HejMHEHAas 3aBUCHMOCTBE MeXIy HanpsokeHueM u gedopmaumei ans
H30TPONHOIO OMHOPOAHOTO MaTepuana. 3T0 AaeT BOIMOXKHOCTS NIPE/ICTABUTH B BUIC HEJIMHEHHON COOCHOR
KpHBOH Hapsxenue-nehOpMaLug ¥, BRIACHACT BUAMMOE H3MeHeHHe cooTHowenue [1yaccona, nailaensoro
JKCIEPEMEHTANBHEIM NYTEM B Cliy¥ae ydeTa Knaccuieckoll nuuedHON Teopmu. OTO TAKKE BBIACHAET
addext IMokinrunra ¥ HemuHEHABIH > dEKT rHAPOCTATHYECKOTO HATIPKEHMA, HAKITAABIBAEMOTO Ha MIPOCTOe
PAcTSXKEHHE ¥ NPOCTHIN CABHr. Y(JIOBUS, BEIBEACHB! BIpeAb TPyCAennoM A DPHEMIEMOCTH YDaBHEHHS
COCTOSIHMS, SBIAIOTCA YAOBIETBOPEHHBIMH M, HEJIMHEHHAA 3aBUCHMOCTH MEXAY HAMpsKeHHeM U aeppo-
MalMelt PeBPaliaeTCs B KIACCHYECKYIO TMHENHYIO 32BHCHMOCTE MEXTY HATIPSKEHHEM H nediopmanveit st
JOCTATOYHO MAJIBIX HATIPAXKEHHH.



